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We prove the asymptotic normality of a two-dimensional random walk 
describing the locomotion of cells on planar surfaces and calculate the 
asymptotic covariance matrix. The trajectories of the walk are random broken 
lines covered with constant speed, where the time intervals between turns as well 
as the turn angles are random and stochastically independent. 
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1. I N T R O D U C T I O N  

For the description of cell motility on planar surfaces the following random 
walk model is frequently used~'2): The trajectory of the microorganism is 
assumed to consist of straight-line paths of random lengths. After per- 
forming such a linear motion for some time, the cell takes a new direction 
according to some probability distribution. Experimental studies of these 
phenomena, e.g., treat Escherichia coli bacteria, ~3) leukocytes, ~4-6) slime 
mold amebae, ~7) 3T3 mouse fibroblasts, ~8"9) and mycoplasma. ~I~ 

In this paper a stochastic model of the motion described above is 
given, the asymptotic normal distribution of the position of the cell in the 
plane for large time instants is proved, and the asymptotic covariance 
matrix is derived. 

Let us proceed to the mathematical formulation of the model. The 
lengths of the successive time intervals of linear motion will be denoted by 
~1, ~ 2 , ' " '  The changes of direction will be given by orthogonal 2•  
matrices M1,M2 ..... so that the (i+ 1)th direction is Pie=Mi-. .M~e, 
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where ee  R 2, Ilel[ = 1, is the initial direction at time O, when the call starts 
from the origin. We assume that the trajectory is covered with constant 
speed 1. 

Let 

~(t)=max {n>~O ~ ~i<~t} 
i = l  

Then the position at time t is given by 

r(t) 

x(t)  = Z 
i = 1  

(1.1) 

We assume that (~n)~>~l 
distributed sequences of 
orthogonal 2 • 2 matrices, 

and (Mn)n~>l are independent and identically 
nonnegative random variables and random 

respectively. Further, we suppose that 

E(~3+~) < ~ for some 5 > 0  (1.2) 

and that 

P(Mlx=_+x)<l forall x~R2\{0} (1.3) 

By condition (1.3), the random walk is not restricted to a line in the plane 
and is thus truly two-dimensional. 

To calculate the exact distribution of X(t) seems to be very hard; see 
ref. 11 for the apparently only known spcial case. 

From (1.3) it follows that I d - E ( M I )  is invertible (Id is the identity 
2 •  matrix). For, if I d - E ( M , )  is not invertible, there is an x ~  ~ 2 \ { 0 }  
satisfying x = E(M1)x. Let rt be the projection on the subspace generated 
by x. Then 1]TtM~xl] ~< ]lx][ with strict inequality if Mlxv~ ix ,  which occurs 
with positive probability. But then 

tlxll = II~(E( M~)x)II = IIE(~M~ x)II < E( II~M~ xlI ) < Ilxll 

a contradiction. 
By (1.2) the first two moments kt=E(~l)  and /~2=E(~)  of ~1 are 

finite, and by (1.3) we can define 

N =  E(M~) [Id - E(M~)] 1 

The matrix N + N' together with the moments/~ and #2 of the step lengths 
will determine the limiting covariance matrix of X(t). Let us now formulate 
our result. 
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T h e o r e m  1. Define the rescaled process by 

X,(t) = a,1/2X(a, t) 

where a,  is a sequence of positive constants tending to infinity. Let (1.2) 
and (1.3) be satisfied. Then for every T>~0, 

N ( o , T [ ~ I d + # ( N + N ' ) ] )  as n ~ o o  (1.4) X,(T) D r 

Our model resembles that of Nossal and Weiss. (12) The main differ- 
ences are: (1) We allow arbitrary random orthogonal transformations 
satisfying (1.3), whereas in ref. 12 only rotations are treated. (2) The 
sequence of times between turns considered here is quite general I-only 
subject to (1.2)], whereas in ref. 12 only exponential ~i are studied. (3) In 
our model ~i+1 and Pie are independent, whereas Nossal and Weiss allow 
the parameter of the (exponential) variable ~i+1 to depend on Pie. It 
might, however, be possible to treat this case by extensions of the methods 
applied below to prove (1.4). 

At the end of their paper, (lz) Nossal and Weiss conjecture the 
asymptotic normality of X(T), stating that "the asymptotic Gaussian 
property can probably be proved starting from a form of the central limit 
theorem for weakly dependent random variables." This is exactly our 
approach to derive (1.4); we make use of a central limit theorem of 
Ros6n. (13) However, it turns out that the application of this result is much 
more intricate than might be expected at first glance. In fact, the 
verification of the conditions of the central limit theorem causes many 
technical difficulties. 

Our theorem also gives an easily evaluated expression for the 
asymptotic covariance matrix, which certainly is not near at hand. 

Condition (1.2) is very important for our proof, because we have to 
utilize various properties of the finite random sequence ~ ,  ~2,.-., ~(,)+~ of 
step lengths, which are not satisfied without assuming (1.2). We strongly 
call in question the validity of the asymptotic normality of Xn(T ) if the step 
lengths do not possess moments of order 3 + e. 

We now consider two examples. 

Example 1. Let M~ be a random rotation, i.e., 

= (cos q9 - s i n  ~o] 
M1 \ s in  ~o cos cp / 

for some random angle q) taking values in [0, 2g), with distribution not 
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concentrated on {0, n} to ensure (1.3). The asymptotic covariance matrix 
of Xn(T) in (1.4) is equal to Ta 2 Id, where 

a 2 - / t2  # ~-# 1 -E(s inq) )2 -E(c~  (1.5) 
2/~ 2 2 E ( s i n ( p ) 2 + [ 1 - E ( c o s q 0 ) ]  2 

Thus, the two components of Xn(T) asymptotically become independent 
and normal with the same variance, given by (1.5). In the very special case 
when ~1 is uniformly distributed on [0, 2n), we have 62=#2/2#. If 
additionally the 4/are exponential with mean 1/2, it follows that a2= 1/2, 
in accordance with the result in ref. 11. 

Example 2. Now suppose that M~ is, with probability 1, an 
improper orthogonal matrix so that 

= (cos ~0 sinq~ 
M1 \sinq~ - c o s  qu 

with some random (p as above. Then the asymptotic covariance of An(T) is 
given by 

= T [_\~-fi - ~ ]  Id -~ 211 - E(sin ,p)2 _ E(cos ,p)2] 

(E(sin ,p)2 + I1 + E(cos ~o)] 2, 2E(sin ~0)'~] (1.6) 
x \2E(sin  tp), E(sin ,p)2 _ [1 + E(cos , p ) ]2 j j  

In this case the components of the limiting normal distribution are 
independent if and only if E(sin p ) = 0 .  This holds, for instance, if the 
distribution of (p is symmetric around n. 

2. A N A L Y S I S  

The following notation is used. If y ~ ~2, I] YI[ is the Euclidean length of 
y, and if C is a 2 x 2 matrix, II Cll = sup{ II Cyll I y e R 2, II yll = 1 }. The ( , )  
is the usual scalar product, [x]  is the largest integer ~<x, and x + =  
max(x, 0). An empty sum is defined to be 0. Let M be a random matrix 
with the same distribution as the Mi. Conditional or unconditional expec- 
ted values of random vectors and random matrices are to be understood 
componentwise. The simple inequality r] E(M ] ~r <~ 2 mE( ][ M ]1 ] d )  will 
be applied sometimes. K, K1, /s are used as generic symbols for 
constants, whose values may change from formula to formula. 
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It turns out that  it is more  convenient  to work  with the j u m p  
processes 

r(t) 

2 ( 0 =  ~ ~,P~ le, 2.(t)=a21/Z2(a.t) (2.1) 
i = 1  

instead of X(t) and X~(t). The process 2 ( 0  is cons tant  in each time interval 
[ ~ 1 +  " " + ~  1, C J +  "'" + ~ )  and equal  to X(t) for each t of the form 
t = r + . . .  + ~. for some n. The  limiting distr ibutions of X~(T) and 2 ~ ( r )  
as n ~ Go are identical, because 

0 in probabi l i ty  as n ~ oo (2.2) 

since a n ~ o o  and ~(~~ converges in dis tr ibut ion as n--* co (see, e.g., 
ref. 14, p. 371). 

We shall use a central  limit theorem for dependent  r a n d o m  vectors 
due to Ros~n (13~ to prove  (1.4). Let 

X~,i = a.1/2(X(a~ Ti/n) -- X(a. T ( i -  1)/n)) (2.3) 

Icon] 

S~,~= l-I )(,,,~; in part icular ,  S . , ~ = k n ( T )  (2.4) 
i - - I  

A special case of  Ros6n's result, which is appropr ia te  for the p rob lem 
considered here, can be formula ted  as follows. 

T h e o r e m  2. Assume that  the following condit ions are satisfied: 

1. There  is a constant  K such that  

lim sup E ( l l a n , ~  - Sn,~ II 2) ~ < K ( f l -  c~) 
n ~ o o  

for all ~, fl >~ 0 such that  ~ ~< ft. 

2. We have 

lim l l i m  ~ p  E(IIE(Sn,~+~- 
A ~ 0 +  z~ 

Sn,~lSn,~)ll)=O 

for all ~ >~ 0. 

3. There  is a 2 • 2 matr ix  C satisfying 

lim 1 lim sup E([]E(Sn,~ + ~ - S~,~)(Sn,~ + ~ - Sn,~)'ISn ~) - A C[]) = 0 
A ~ O +  A n ~ o o  

for all ~ >t O. 
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4. We have 

lim -- lim sup S. ~ + ~ - S. ~ II 2 dP = 0 

for all ~ >/0 and all e > 0. 
Then it follows that 

an, 1 ~  as n ~  

We shall prove 1-4 in a series of four lemmas, where the ith lemma 
will imply condition i. The matrix C will be identified as �89 + 
p ( N + N ' ) ] .  

Conditions 1 and 4 are needed to ensure that S , ,~= X, (T)  is a sum of 
uniformly small terms, which is clearly indispensable for proving 
asymptotic normality. However, these terms are not the individual sum- 
mands X,,i, but segments S , , ~ + ~ - S , , ~  of the total sum. By 1, these 
segments must have norms with uniformly small second moments;  by 2, 
they must satisfy some kind of Lindeberg condition. 

Uniform negligibility of small segments of the sum is not sufficient for 
establishing asymptotic normality. One also has to impose conditions on 
the dependence structure of these segments. Conditions 2 and 3 can be very 
roughly described as stating that, in some sense, 

E(Sn,=+~-S..=IS.,~)~O 

Thus, Sn,~ approximately behaves like a diffusion process with drift 0 and 
constant diffusion matrix C. In Lemmas 2 and 3 we shall show that even 
for fixed A > 0 the lim sup terms in 2 and 3 are equal to 0. 

For  the proofs we shall need some basic facts about  the sequence 
(~.)n~> 1, which are essentially known from renewal theory (see refs. 14 and 
15): 

(a) For  ~ > 0 and i = - 1, 0, 1, ( ~ , )  + i)t/> 0 is uniformly integrable if 
E ( ~ o + i ) ~ < K <  ~ for all E(r + 1) < ~ .  Especially if (1.2) holds, we have 2 +~ 

t~>0. 

(b) If l + l < i < j < ~ k ,  t>~s>~O, and f ( r  is integrable, 
E(f(~i, ~j )h r ( t )=k ,  v ( s ) = l )  does not depend on the pair (i, j), and 
E(f(~l+ 1, ~j) l r(t) = k, r(s) = l) does not depend on j. 

(c) For  all natural numbers a we have 

E(v(t)a)<~K(l+t a) foral l  t~>0 (2.5) 
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While (a) is a merely technical result, (b) is very intuitive, because it states 
that (i) every pair of durations of steps that are carried out during the time 
interval (s, t) has the same conditional distribution, given that the time 
interval of the kth step contains s and that of the /th step contains t, and 
(ii) every pair consisting of the duration of the step performed at time s and 
the duration of a step carried out in (s, t) has the same conditional 
distribution, given the same condition as in (i). 

Fact (c) is valid without further conditions, as is most easily seen by 
considering the random walk generated by ~=el{r where e > 0  is 
chosen such that P ( r  The corresponding r'(t) satisfies 
r'(t) >~ r(t), because ~; ~< {~, and has a negative binomial distribution with 
parameters 6 and [t/e]+l. Thus, E(T'(t) a) is easily calculated and 
estimated to give (c). 

Now we proceed with the formulation and proof of the four announ- 
ced lemmas. 

L e m m a  1. The following holds 

lim~p E(]IS., fl -- Sn, ~ [I 2 ) ~ K(fl -- ~) (2.6) 

for all ~,fl~>O, ~<fl .  

Proof. 
have 

where 

By our independence assumptions on  (~i)i~>1 and (Mi)~>l we 

E( II X(t) - X(s)II 2) 

~--- ~p=0 q=p+l ~ E(l{z(s)=P'*(t)=q}I~p+~2i= i 
q l q  j )  

+ 2  ~ ~ ~i~jE((Pi le, E(M)J-ipi_le)) 
i=p+l  j= i+ l  

E l{~(,)=p.,(t)=q} ~p+l+(q-p--1)~2q 
p=O q=p+l  

+ 2~p+l~qe((Ppe, Cq_, lepe)) 

q '  1) +2~q l~q Z E((Pi- le ,  Cq-iPi l e ) )  
i=p+2 

(2.7) 

C~ = [E(M) - E(M) k+ 1-] l id  -- E(M)]  i (2.8) 



622 Stadje 

By ((C~(( ~< 2 (( (( l i d  - E ( M )  ] -1[[ and the above results on ~(,~ and {~(,)• 1 
we obtain 

E ( 1 1 2 ( 0  - 2(s)112) 

2 + [~( t ) -  ~(s)-  13 r <~ E(~ ~(~)+ 1 

+ 4 [[ l i d  - E ( M ) ]  --1 ]1 { ~ ( s ) +  1 ~ r ( t )  

+ 4 [[ l i d _  E ( M ) ] - I [ [  2 1/z z l/2 

~l/2bE(~2b ~ I /2b-I  + E ( l ~ ( t ) - r ( s ) l ~ ) l / ~ E ( ~ , ~ - l ,  t r J 

<~ g l  + g 2 E ( l z ( t )  - ~(s)l~) 1/~ (2.9) 

for some constants  K~, K2 ~> 0. Here a > 1 is a positive integer, and b > 1 
satisfies a -1 + b - l =  1 and 2b < 2 + ~ .  We have used the H61der and the 

E (  y 2 b Cauchy-Schwarz  inequalities and the fact that  sup,>0 ~ , ~ + ~ ) <  oo for 
i =  - 1 ,  0, 1. 

Now let s . =  T [ ~ n ] / n  and t . =  T [ B n ] / n .  It follows from (2.5) and 
(2.12) that  

lira sup E(IIS,.~ - S,,~ II 2) 
// -* oo 

= lim sup a ~  1 E ( l [ 2 ( a . t . )  - X(a.s.)[[  2) 

~< lim sup K 2 a ~ '  E ( J ~ ( a . I . )  - ~(a.  t . ) l  ~)l/~ 
n ~ o o  

~< lim sup K 2 a s  E([ 1 + T (a . ( t .  - s.))] ~)1/o 
?/~r co 

~< lira sup K 2 a ~  1 E ( ~ ( a . ( t .  - s . ) )  ~) 

~< lim sup K 3 E ( I T ( a . ( t .  - s . ) ) /a . ]  ~)1/~ 

~< lim.sup K4( t . - s . )  = Ka T(tg - ~ ) (2.10) 

k e m m a  2. We have 

E ( I I S n , ~ + ~ - S . , ~ I S ~ , ~ ) ] I ) = O ( a ;  1/2) as n--+oo (2.11) 

for all ~, A >~ 0. 
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Proof. We introduce the ~-algebra d s + ,  which is generated by 
~i,...,~(,)+1, M~,...,M~(,)_I. Various properties of condit ional expec- 
tations will be tacitly used in the following. Let A(p ,q)= { ~ ( s ) = p ,  
r(t)  = q } .  As above,  we can write 

E()((t) - )((s) I d~ + ) 

\ i  = r(s) + 1 

0 q = p + l  

p 0 q = p + l  

i = p + l  

IA(p,q) ~ p + l P p e + ~ q  2 E ( M ) i - P P p  1 e d s+  
i = p + 2  

x [ E ( M )  2 - E(M) ~(') ~(')+ ~][Id  - E ( M ) ]  -1 Pr(s)_ ,el ~ +  ) (2.12) 

Since J((s) is a function of ~1,..., ~(s), M1,..., M~(s) 1, X(s) is ds+-  
measurable.  By this remark, the simple inequality [ [E(Utd)[[  ~< 
21/2E(I[UIJ]d), and (2.12), we obtain 

g( l lg(X(t )  -- g ( s )  I X(s))ll ) 

= E(IIE(E(X(t) - 2 ( s )  I sO,+ ) I X(s)) II ) 

<~ g(2'/2E(IIg(J((t) - J((s) I ~r + )l[ [ J((s))) 

= 2V2g(llg(J?(t) - s lds+ )tl) 

~< 2 3/2 1[ l i d  - E ( M ) ]  11E(~r(s)+ 1 -t- ~ ( t ) )  

~<K (2.13) 

where K is independent  of s and t. Setting s ,=[Tn]T/n and t , =  
[(c~+A)n]T/n, we get 

E( I IE(2 , ( t , )  - 2n(s , )  1 2 , (s , ) ) j l  ) ~ Ka~ 1/2 (2.14) 

as claimed. 
The most  difficult part  of this paper is the derivation of the following 

lemma, which contains the introduct ion of the asymptot ic  covariance 
matrix. 
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Lemma 3. We have 

lira ~ p  E (E((gn,~+~-gn,~)(gn,~+a-gn,~) ' lSn ,~)  

0 

for all e, A >~ O. 

(2.15) 

Proof. L e t s ~ < t a n d  

U = E( [2 ( t )  - 2 ( s ) ]  [2( t )  - 2(s)]'  I d,+ ) 

Since X(s) is ~r 

E( [ 2 ( 0  - X(s)] [ 2 ( 0  - 2(s)]' 12(s)) = E(U[ X(s)) (2.16) 

Let again A(p, q ) =  {~(s)= p, r ( t ) =  q}. Using the same partition technique 
as in the proof of the former lemmas, we can write 

U=E ~ ~i~jPi_,e(P;_le)'[ds+ 
i =  z(s) + 1 j = ~(s) + 1 

p = 0  q = p + l  

q 

+ 2 E(1A(p,q)r 2P, le(Pi-le)'lds+) 
i - - p + 2  

q 

+ ~ E(1A(p,q)~p+l~q[Pi_le(Ppe)'+Ppe(Pe l e ) ' ] l d , + )  
i = p + 2  

q - - 1  q 

+ ~ ~ E(lmp, q)~q ,~q[Pi ,e(Pg ,e)' 
i - p + 2  j = i + l  

+ P;- le(Pi-,e) ' ] I ~ ,+ )} 

= I + II + I I I  + IV (2.17) 

The different sums in the braces result from distinguishing the cases (a) 
i = j = p +  1, (b) i=j=p+2,..., q, (c) i = p + 2 , . . . ,  q and j = p +  1 or vice 
versa, (d) i,j~ { p + 2  ..... q} and ir  Now we introduce some auxiliary 
quantities of use for rewriting the sums I-IV in a more convenient form. 
Let Y=P~(s) le and let A, A 1, A2 .... be independent random matrices, 



Asymptotic Normality in a 2D Random Walk 625 

which are also independent of all Mi and ~j and all have the same 
distribution as M. Further, we define 

1 r ( t )  - -  z ( s )  - -  k 

R,,~= E E(Am . . .A ,  r r ' A ' t . . . A ' I  r), k = 0 ,  1 
~ ( t ) -  ~(s) m=~ 

(2.18) 

where 0/0 :=0, a case occurring iff r(s)=r(t). Note that R.,k=O if 
r(t) -- r(s) <~ 1 -- k. It follows from our independence assumptions and some 
algebra that we can write 

I = E(~(,)+~ E(A YY'A'I Y) I ~s+ ) 

II = ~ ; ( [ z ( t ) - , ( s ) ]  G,>R,,oIN+) 

I I I =  E(1 {T(,)+ ~ < ~(,)~ ~(,,)+ 1 ~,(,){ [E(M) - E(M) w) - ~(~)] 

x [ I d - E ( M ) ]  tE(AYY'A'] Y) 

+ E(A YY'A'I Y)[E(M') - E(M') ~~ [Id - E(M' ) ]  - ' }  I ~ +  ) 

I V  =~ E ( ~ r ( t ) _ l  ~ ' r ( t ) [ " C ( / )  - -  T ( S ) ]  {Rn, 1 E ( M ' ) [ I d  - E ( M ' ) ]  1 

+ E(M) [Id - E(M)]  - t  R.,, } J~Cs+ ) 

z(t)  - ~:(s) - 1 

-E(~,(t)_~,( ,)  ~ [E(A,~ . . .A t YY'AI" "'Am} Y) 
m = 2  

X E ( m t )  z(t) - z ( s ) -  m + l [ Id  - E ( M ' ) ]  - t  

+ E(M)~(,)-T(s)-m + 1[i d __ E(M)] -t 

x E(Am... At YY'A'I . . .ALl  Y)l l~d~+ ) 

= I V  ( t )  _ I V  ( 2 )  

(2.19) 

(2.20) 

(2,21) 

(2.22) 

Now let s~ = T[c~n]/n, t~ = T[a + A]/n, and 

V . = E ( f 2 . ( t . ) - 2  ~ " ' n(Sn)][Xn(tn)--Xn(Sn)] IS~sn+) (2.23) 

To prove the lemma, we must show that 

" - ~ L - ' ~ - I d + p ( N + N ' ) ]  2 , ( s ~ ) ) ) ~ 0  a s  / / - - * ( 3 0  

(2.24) 
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It clearly suffices to prove 

A7T /.21 n--+ 

Relation (2.25) will be derived by considering the following crucial decom- 
position of the integrand in (2.25): 

AaTF#2 Id + #(N + N')I uo-2L 
= E ( {a; l[z(a , t , ) -  r(a,s,) ] -A2  T} [{2(a.,~ 

+ ~Tr162176 ,(R,,,1N' + NR,,,1)]laga...+) 

+ E ~(an,,,) Rn, o-- Id + Rn,1-  Id 

+ N Rn,1--~ Id ~(~.,.) ~( .... )-1 

A~T 1 + 2 /* [E(~(a.'.) I d~"" + ) - / . 2  ] 2 Id 

A~T 
+__~ [E(~(,.,.)~T(,.,.)_ 1 ida .s~ ( N +  N') 

+ a ; l ( In  + I I I , -  IV(~ 2)) (2.26) 

where In, IIIn, and IV(, 2) are the quantities corresponding to I, III, and 
IV (2) with t and s replaced by antn and ansn. 

Using (2.17) and (2.19)-(2.22) for U, instead of U, this decomposition 
is easily checked. Now the proof of (2.25) is carried out by successively 
estimating the terms on the right-hand side of (2.26) back to front. We 
start by noting that 

E(lla21I,, ]l) ~< a[lKE({~r .... )+1) = O(a[ 1) (2.27) 

and, by the Cauchy-Schwarz inequality, 

E(Na~ -1 -IIIn ]1) -1 2 1/2 2 <~a,, KE(~  .... )+~) E(~(aot.))=O(an 1) (2.28) 

For estimating g(llas 1 .IV~2)14) we choose a sufficiently large a~  ~d and a 
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corresponding b > 1 such that a 1 + b 1 = 1. As in the proof of Lemma 1, 
repeated use of the H61der inequality yields 

E( {[a2 a- IV (~2) l] ) 
~ IUF(~2b ~l/2b ~,(N2b ~l/2b 

~ v ( a n t : n )  1I ~,~:(antn)] 

x a .  1E(lr(a. t.) - r(a.s .) l  2a)1/2a 

x E (  [ r ( a . t ~ ) - z ( a . s . ) ]  1 

r(antn)-- ~:(ansn) 1 

X 2 [ E ( A m ' " A 1 Y n Y ' n A ' ~  . . . A ' m l  Y , )  
m=2 

x E(M')  ~(~"")-~( .... )--m+ 1 

+ E(M)~(~.,.)-~( . . . .  ) m+ ' E(Am. . .  A ,  Y.Y' .A' ,  "" A'ml Y)] 2~),/a~ 

(2.29) 

where now Y.=P~(  .... )_,e. By our assumption E ( ~ + ~ ) < o o ,  we again 
conclude that 

sup E(r I) < 2 b  0% sup E(r < oO 
n>~l n~>i 

As in (2.10), it is seen that 

sup ayi  E([z(a. t . )  - 72(anSn)12a) l/2a ( (30 (2.30) 
n~>1 

Thus, the first factors on the right-hand side of (2.29) are bounded. Concer- 
ning the main term in (2.29), we now show that 

E(r/2~) --+ 0 as n ~ o o  (2.31) 
where we have set 

~]n= ],/ i m=li E ( M ) "  m + I E ( A m . . . A 1 Y n Y ' . A ; . . . A ' ~ I Y . )  (2 .32)  

Relations (2.30) and (2.31) entail E(a2 ll[Iv<n2)i[)~O, because r ( a n t . ) -  
r(a.sn) is stochastically independent of t/n and converges almost surely to 
infinity, so that by the formula of total probability 

E r ' ~ E ( q ~ a ) P ( z ( a n t . ) - z ( a . s . )  k)--*O ~rl~(antn) 7:(anSn)) ~ = 
k=0 

as /l -~ oO 
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Hence we must  p rove  (2.31). No te  that  

q,= E(A,+I . . .A1YnY'nA'I . . .A ' ,+In -1 Z An+I " " A m + l [  Yn) 
m = l  

(2.33) 

Since the in tegrand in (2.33) is uniformly bounded,  it is sufficient to prove  

n-1 ~ A~+ 1 "'" Am+ 1 D > 0 as n ~ oO (2.34) 
m = l  

Thus,  let the r a n d o m  matr ix  B be 
n - l Z ~ = l  A~+I ""Am+l .  Since 

E ( n  ~ ~, A n + l " ' A m + l l n l  
m = l  

n 1 

a weak accumula t ion  point  of 

An+ 1 �9 ,,Am+ 1 
m = l  

= n  l l d + n  2 ~ E(A~+I . . .Ap+I[E(A)_E(A) , -p+I]  
p = l  

' A'  • [ - I d - E ( A ) ]  ~Ap+l ... n+l)  

n--1 

+n 2 ~ E(An+I...Ap+I[E(A,)_E(A,),~-p+i] 
p = l  

" " A '  x [ I d - E ( A ' ) ]  ~A;+~ ,+1)  

0 as n ~  ~ (2.35) 

we immediate ly  have E(BB')=O, so that  B = 0  a lmost  surely. If  follows 
that  

E(lta~-I - IV~2)[I) ~ 0 as n ~  (2.36) 

Go ing  to the next te rm in (2.26), we must  show that  

E( 2 IE(~(a,t,) I da,~~ + ) - #2 I) ~ 0, as n ~  (2.37) 

Here  we have to use the e lementary  renewal theorem l im ,~  o~ z(t)/t = 1/# 
a lmost  surely (see, e.g., ref. 17, p. 127). 

Let  t '  = antn, s' = a, sn, and 

N, = {pc  [~[[p/s'-- 1/#l < ~} 

N, = {q~ ~llq/t'- 1/#1 <~}  
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where ~ > 0 is so small that sup N~ + 1 < inf N~. Then it is clear from the 
elementary renewal theorem that, with probability close to 1, r(t ') and r(s') 
will belong to N~ and N~, respectively. Therefore, we decompose 

2 E(~(,,)[As, + ) as follows: 

peNe,qeAre 

= Z E(l{r162 ~+21~,  ..... r 
peN~ 

-- ~ E(l{.(s,}=p,~(C)=q}~+z]r (2.38) 

where the remainder term R is given by 

2 R = E(1 {~r(s,)r N . . . .  ( t , ) q ~ r  } r [ ~s,+ ) (2.39) 

Since the first sum on the right-hand side is equal to 

2 _ u2P(r(s') e N~) (2.40) 
p e  N~, 

it follows immediately from (2.38) that 

E(IE(r162 I d,,+ ) - U21) 

~<#2(1 -- P(r(s')e N,)) + E(~(cl[2.1{~r162 + l {r(s,)r ) 

<~ #2 P(z(s ') (~ N~) + [2P(r(t ')  r ~)1/~ + P(r(s') r NJ/~] E ( ;~zb ~l/2b ~,~r(t')! 

--, 0 (2.41) 

where a , b >  1 are chosen such that a - ~ + b  1= 1 and 2 b < 2 + e .  The 
convergence to zero follows from lira,_ ~ r(t)/t = 1/p almost surely. 

In the same way it is proved that 

2 (2.42) E(lE(~(~~162176 as n- -+~ 

For the two first terms on the right-hand side of (2.26) we have to show 
that for sufficiently large integers a > 1 

l imE~  R . , k - ~ I d  =0 ,  k = 0 , 1  (2.43) 

l i m E (  a21[r(a.t .)-r(a~s.)] A;T ~)=O (2.44) 

822/51/3-4-20 
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To derive (2.43), it is enough to prove Rn, k o �89 as n ~ ~ ,  since the 
sequences R,,,k are uniformly bounded. For this it suffices to show that 

B, :=n-~ L E ( A m ' " A I Y ,  Y'nA' '"A'IIYn) o 
1 

Id (2.45) 
m=l 

i.e., each weak accumulation point B of Bn is equal to �89 Id almost surely. 
We may assume Bn & B. Obviously we have E(ABnA'IBn)~ E(ABA'IB), 
because A is independent of Bn and B. On the other hand, 

Bn =n l L E (AE(Am- I " 'A1Y~Y 'nA '~ " ' A ' - t IY , )A ' IYn )  
m=l 

=n-~[E(AY,,Y',,A ' ] Y,,)-E(A,,+ ~ . . .AI  Y,,Y',A'~ ... A',+ ~] Y,,)] 

+ E(AB, A' I Y,,) (2.46) 

The first term on the right-hand side of (2.46), say n-lCn, has a norm 
<~ Kin for some constant K. Since B, is a function of Y,, we can conclude 
that 

lIB, - E(AB,,A'[ Bn)[I = IIE(B~ - E(ABnA'I Y,) I B,)ll 

= I[E(n ~C. IB.)II <~g/n~O (2.47) 

Thus, B satisfies B=E(ABA']B) .  We conclude from this equation that 
B = � 8 9  almost surely. Clearly we may assume B=cons t ,  so that 
B= E(ABA'). Indeed, suppose that for every constant (nonrandom) sym- 
metric matrix b of trace 1 the equation b = E(AbA') implies b = �89 Id. Then 
it follows from the relation 

b = E(ABA'IB = b) = E(AbA') 

which holds for almost all possible values of the random matrix B, that 
B = 1 Id almost surely. 

Now let B=cons t .  Since B is symmetric, there are an orthogonal 
matrix U and a diagonal matrix D such that B= UDU'. Then 
D =-E(~IDA'), where .4 = U'A U. Let 

O=( dl dO), A~ -- ~A21//2'~ 11 2422,]'412"~ (2.48) 

Assume d I # d 2. The equations 

d l =  dl E(--4 21) -t- d2 E(A22), d2 = d t  E(A~I) + d2E(2~2) (2.49) 
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entail E(A21)= E(.,4~2 ) = 1, SO that A is concentrated on the four matrices 

o _+1 

Thus, with probability 1, A maps the line { U'(~)I x e N } to itself, a case we 
have excluded by (1.3). Hence, it follows that di =d2,  and since B has 
trace 1, d~ = d 2 =  1/2. Thus, (2.43) is proved. 

To show (2.44), note that r(ant .) /a.~ T(c~+A)/# and r (a . s . ) /a .~  
T~/# almost surely. Thus, it suffices to prove that la21 [ r ( a . t . ) -  ~(a.s.)]l  is 
uniformly integrable. But this is a consequence of 

sup E(layt[r(ant.) - "c(a~s~)] I a+ 1) 

sup a2a- lE( l l  + r (a . ( t .  - sn))] ~+1) < oo 
n>~l  

where the last inequality follows as in the proof of Lemma 1. 
We have now shown that for every term on the right-hand side of 

(2.26) the expected value of its norm tends to zero. This completes the 
proof of Lemma 3. 

L e m m a  4. We have 

1 (, 
lim lim sup | 

A + 0 +  5 n ~ o o  o{ 

for all c~ ~> 0 and all e > 0. 

IIS~.~+A & , d l ~ e }  
Ilan,~+a-an,=ll2 de=O (2.50) 

ProoL Since 

f{,s IPS.,~ +a - S..=ll 2 dP 
~l -- Sn.~ll2 ~ e} 

=ff  P(llS.,~+~-S.,.ll>~.,/-t)dt+dr(llS.,~+~-S.,~ll>.e) (2.51) 

by an integration by parts and 

S.,~+~-S. , .=J(.(T[(c~+ zl)n]/n)-  f(.(T[~n]/n) (2.52) 

it suffices to prove the following: There are constants K >  0 and/3 > 1 such 
that for all 6o > 0 there exists an no = no(6o) e N satisfying 

P(IIX.(t) - 2.(s)ll ~> 6) ~< K(t - s)P/6 :B (2,53) 
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for all tt>s~>0, 6 >~60 , and n>~n o . For, if the existence of K and fl is 
established, the right-hand side of (2.51) can be estimated from above by 

s { T  }8 {(T/n)([(c~+ A)n]_[om])}~  
K ( [ ( ~ + A ) n ] - [ ~ n ] )  t - S d t + e  2 ~2B 

<~ R(ASel - 8 + ASe2- 28) (2.54) 

if n is large enough to ensure the applicability of (2.53) to both terms on 
the right-hand side of (2.51), i.e., n>~max[no(e), n0(x/7)]. Further, the 
constant K does not depend on s and A. Hence, 

1 sup ; 

~ R(gl--  8 ..}_ e2-- 28) aft 1 (2.55) 

for each fixed e > 0, and since fl > 1, the right-hand side of (2.55) tends to 
zero as A --~ 0 +. Thus, it remains to show (2.53). 

Without restriction of generality, assume that ~ = m, is an integer. 
Let sj = s + (t - s)j/mn, j = O, 1,..., mn. Obviously IIXn(t ) - Xn(s)ll >~ 6 
entails maxj NXn(Sj)- .~fn(Sj 1)]l ) 6 / 2  o r  

max mini  112n(sj) - 2~(s)II, 112~(t) - 2~%)11 ] > 6/4 
J 

Therefore, 

P(112~(t)  - 2.(s)LI > 6)  

~< P ( m a x  112n(sj) - 2n(Sj_ 1)LI > 6/2) 
J 

+ e(maxmin[l lXn(sj)-Xn(s) l l ,  112~(t)-X~(sj)ll]>>.6/4) (2.56) 
J 

Now choose 6o > 0 and let 6 >/60 be arbitrary. The first probability on the 
right-hand side of (2.56) is equal to zero for n >t no(6o). This follows from 

II 2~(sj) - 2~(sj_l)ll <~ sj - ~ _ 1  = (t - s)/m, 

One has to choose no(5o) such that rn, > 2 ( t - s ) /6o  for n >~ no(6o). 
To estimate the second probability on the right-hand side of (2.56), we 

use a theorem of Billingsley (ref. 16, p. 89) in the following form: If 
Y1, Y2,--. is an arbitrary sequence of random variables, Sj = Y, + .-- + Yj, 
and if for s o m e a > 0 a n d f l > l  

P(IISj-  S,I[ >6, IlSk-- Sjll > a) <~ a 2#(ot(k-- i)(t-- s))# 

forall O<~i<~j~k<~m, 6 > 0  (2.57) 
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then one can conclude that 

P( max min[llS/ll, Ilam--ajll] >.--6)<--.KS-2~(ma(t--s)) ~ (2.58) 
O<~j~m 

Let SJ')=f(.(sg)-X~(s). To check condition (2.57) for these sums, note 
that at some time instant t', the future process (f(.(t)),>.c depends on the 
past only through the direction of the motion at time t' and the residual 
time up to the first jump following t', thereafter looking like the original 
process starting at the origin. Formally, this can be expressed as follows: 
For t"/> t' 

e.(,,,):x-o<,,)+ 2 r ,,o 
\ \  l=1 

(2.59) 

Here t/.=P~(~~ , and for each fixed y e ~ 2  such that i lyH=l  the 
process (Y,,(t, Y))t>~ o has the same distribution as _g,~, but with initial direc- 
tion y, and (Y~(t, Y)),~>o is independent of (f(~(t)),<_,., ~(~.,,)+~, and t/.. 
Now let Q~/be the joint distribution of the pair 

l=1 

and set t' = s/, t" = s k for arbitrary 0 ~< i ~< j ~< k ~< m..  Then by the formula 
of total probability, 

p F (-) (.) (,Is) - s ,  II >a. llS~")-s~')ll >6) 

= f P (]lf~n(Sj)-- Xn(Si)]] ~ 8, t1Yn( Ig, Y)H ~ 8  

ISk-- L 4+ ,q. =(u,y)  dQ./(u,y) 
\ 1=i 

--f P(ll Y.(u. y)l[/> 8)P(ll~.(s+)- 2.(s;)ll > al 

~s~- t~=l 4l , ~. = (u, y) dQ./(u, y) 

sup 8 2E(ltYn(u, a)ll2)P(ll2.(sj)-2.(si)rl >>.8) O<~u<~sk--sj 

<~ K15 2(s~-sj) K28-2(s/-s+) 

K8 4 rn ;Z[ (k -  i ) ( t -  s)] z (2.60) 
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For the second equation we have used that Yn(u, y) is independent of 
IlJf~(sj)- J(~(si)ll and of the conditioning random variable. The inequalities 
follow from Chebyshev's inequality and Lemma 1. Thus, (2.55) holds with 
/? = 2 and c~ = Kl/Z/m~, so that 

P(maxmin[llS}n)ll, IIS~-S~%]>~6)<~K6 4(t--s)2 (2.61) 
J 

Inserting (2,61) into (2.54) yields 

P(ll2~n(t)--~n(S)N ~(~)~K(t--s)2/(~ 4 forall  t>~s>~O (2.62) 

if 6 >~60 and n >~n o for some no depending only on 60. Thus, (2.53) holds. 
The lemma is proved. 

Lemmas 1-4 obviously imply the conditions 1-4 of Theorem 2, and 
Theorem 1 follows immediateley. 

3. C O N C L U S I O N  

In this paper we have studied a two-dimensional random walk X(t) 
with random step lengths and random directions which are generated by 
iterating a sequence of independent random orthogonal matrices. This type 
of random walk is often used to describe the motion of cells on planar 
surfaces. Several properties of the increments X ( t + A ) - X ( t )  of the 
process, unconditional as well as conditional on X(t), have been derived. 
From this detailed analysis we have been able to conclude the asymptotic 
normality of the rescaled process a reX(at) as a --* oe and to determine its 
asymptotic covariance, which turns out to depend on the first two 
moments of the step lengths and the matrix E ( M ) [ I d - E ( M ) - I ] +  
E(M' ) [ - Id -  E(M') ] -1  (M being one of the random changes of direction). 
Although the asymptotic normality seems intuitively obvious and has been 
conjectured by other authors, the exact proof given here requires a heavy 
machinery. The condition E(~3+~)<oe, where r is a step length, 
apparently is indispensable. As already mentioned, our derivation also 
leads to a neat formula for the asymptotic covariance matrix. Hopefully, 
the methods developed in this paper will also prove useful for the analysis 
of more general random walks of the type considered here. 
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